「関数解析」カテゴリーアーカイブ

関数解析5(逆作用素と閉作用素)

\(X,Y\) がバナッハ空間であるとき,\(X\) から \(Y\) への線形作用素 \(T\) が閉作用素であるための必要十分条件は定義域 \(D(T)\) に定めたノルム\[\|x\|_{D(T)} := \|x\|_X + \|Tx\|_Y \]によって,\(D(T)\) がバナッハ空間となることである.
2021年12月23日


関数解析4(有界線形作用素)

\(T\in \mathscr{B}(X,Y)\) に対して\[ \|T\| := \sup_{x\neq 0}\frac{\|T(x)\|}{\|x\|}\]と定めると,これは \(\mathscr{B}(X,Y)\) のノルムである.また,\(Y\) をバナッハ空間とすると,このノルムにより \(\mathscr{B}(X,Y)\) はバナッハ空間となる.
2021年12月16日


関数解析3(ONS, CONS)

内積空間 \(X\) の部分集合 \(\{x_{\lambda}\}_{\lambda\in\Lambda}\) が\[(x_{\lambda}, x_{\mu}) = \delta_{\lambda\mu}\]を満たすとき,\(\{x_{\lambda}\}_{\lambda\in\Lambda}\) を ONS という.また,この \(\{x_{\lambda}\}_{\lambda\in \Lambda}\) が CONS であるとは\[X= \overline{\mathcal{LH}(\{x_{\lambda}\}_{\lambda\in \Lambda})} \]となることである.
2021年12月11日


関数解析2(ヒルベルト空間)

内積空間 \(X\) が内積から定まるノルムに関して完備であるとき,\(X\) をヒルベルト ( Hilbert ) 空間という.
2021年11月26日


関数解析1(バナッハ空間)

完備なノルム空間をバナッハ ( Banach ) 空間という.
2021年11月25日